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Abstract 
 
This paper will perform an impartial examination of generic anti-exploitation technology for the Windows 
platform. Beginning with a brief tour of the most important historical anti-exploitation projects, we will then 
analyse recently introduced security features in Windows XP, Service Pack 2 and Windows 2003, Service 
Pack 1, and summarise the remaining areas of vulnerability. Finally, we will discuss the various general 
approaches taken by 3rd party technology and also examine some possible future developments. 
 

Scope 
 
Although this paper will attempt a detailed examination of the available and prospective technologies that 
can provide generic anti-exploitation for Windows, it should not be inferred that such technologies can 
provide comprehensive security in and of themselves. In fact, based on the research presented, it should 
become clear that this breed of technological solutions is never likely to fulfill the promise to “make 
malware a thing of the past”. Nevertheless, anti-exploitation technology is a useful, indeed critical, 
addition to a defense-in-depth security posture. 
 
Readers are assumed to have a fairly sound understanding of stacks and heaps, passing familiarity with 
x86 assembler and CPU registers, and an understanding of basic programming concepts like pointers 
and functions. Some sections are technically heavy, and are intended to illuminate the referenced source 
material rather than to completely re-hash it, so further reading is highly recommended. 
 

Definitions and Terminology 
 
Many of the definitions in this area of security are not set in stone. It is not intended here to redefine any 
terms, but simply to explain the way they are used in this paper.  
 
Referring to “anti-exploitation” technology is lamentably vague. When discussing anti-exploitation 
technology in this paper, we focus mainly on a specific class of attacks that use program input to cause 
memory corruption and subsequent code execution. These attacks may be delivered locally or remotely, 
via network input, file contents, environment variables, command-lines or many other means. The 
simplest of these attacks are stack or heap-based buffer overflows, but also included are integer errors 
(which are essentially delivery mechanisms for buffer overflows) and format string bugs; so referring to 
anti-exploitation technology as “buffer overflow protection” would not cover all of its aspects. Below, we 
will introduce “control-flow attacks” as a more general term for this class of attacks. 
 
Vulnerabilities such as the ones discussed above are said to be “exploited” by attackers, which leads to 
the use of the word “exploit” to describe specific, attacker input. Exploits may be delivered via various 
means - for example a malicious .JPEG file may be an exploit, for certain vulnerabilities.  
 
Finally, for those exploits that result in the execution of attacker-chosen code the exploit frequently 
includes “shellcode”, which is a string of processor specific machine code, or “opcodes”, that will be 
executed. Shellcode is sometimes also referred to as an exploit’s “payload”. 
 
We have broken anti-exploitation technology into two types – measures that are “vulnerability focused” 
and those that are “exploit focused”. As an example of our terminology, schemes that aim to detect and 
prevent buffer overflows at function return are “vulnerability focused” while those that aim to detect API 
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calls from the stack are “exploit focused” since they address exploitation behaviour which could arise from 
many different kinds of vulnerability. 
 
The figure below outlines the areas that will be discussed within this paper. 
 
Figure 1: Points of Attack and Defense 

 
 

Cause and Effect 
 
Although self-evident, it must be noted that no technology can provide protection against attacks that 
bypass it completely. For example, in the figure above, network technologies like perimeter firewalls are 
unable to protect against attacks from the local segment. Similarly, anti exploitation technology is unable 
to protect against attacks which do not exploit one of a specific set of vulnerabilities. Attacks such as 
Trojan horses, phishing, viruses and similar threats requiring user interaction cannot usually be prevented 
by this technology. Pure data vulnerabilities, like the growing incidence of SQL injection attacks, for 
example, also bypass anti-exploitation technology, since the SQL server is behaving normally and has 
simply been passed an undesirable query by a script. In other words, even if a perfect solution to the 
problem of vulnerability exploitation were to exist, there are many classes of attack which it cannot 
address. 
 

Program Control Flow 
 
As a prelude to discussing the various vulnerabilities and protection strategies, it is useful to examine the 
concept of a control flow graph (CFG). Considering both vulnerabilities and protection strategies in terms 
of their effect on program control flow allows for meaningful comparisons and clearer understanding of 
the concepts involved. 
 
A control flow graph is a graph that represents all possible paths of code execution within a program. 
Each block of contiguous code within the program forms a “node” in the graph, whereas all control 
transfers like JMP, CALL and RET represent edges – in other words connections between the nodes. 
This concept is important in compiler design, and more information is available in materials related to that 
field – although a brief summary can also be found in Wikipedia1. 
 

                                                 
1 Wikipedia entry, Control Flow Graph, 2005, http://en.wikipedia.org/wiki/Control_flow_graph, accessed June 20, 
2005 
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Looking at a code graph generated by IDA Pro2, the nodes and edges can be easily seen: 
 

 
 
A very important concept to recall is that this control flow graph should never change for the huge majority 
of programs – because the graph includes all possible branches. The exceptions are those programs that 
need to perform self-modification of code - such as the runtime code generation used by some 
interpreters, or certain device drivers that require extreme performance. This is why code segments within 
an executable file are typically marked as read-only (and also why data segments are typically marked as 
non-executable, but more on that later). 
 
In general, we can classify the effect of an attack by examining what effect it has on the control flow 
graph. Stack smashing attacks, for example, are “code injection” attacks, since they inject new code 
(adding a node) and then modify a pointer in memory (adding an edge) to redirect execution to the 
payload. Other, more subtle exploits for buffer overflows use pointer corruption without the need to inject 
code – merely adding or shifting edges in the graph. Probably the most famous example of this class are 
“return-into-libc” attacks, where fake function parameters are pushed onto the stack and control is 
transferred to a library function. The canonical example is to push “/bin/sh” and modify the function’s 
return address to point to system(). 
 
                                                 
2 IDA Pro is a widely used disassembler and debugger. More information at http://www.datarescue.com/ 
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The most subtle attacks, “pure data” attacks, corrupt program data but leave the CFG completely 
untouched – for example overwriting a security critical data structure which is later used in the program 
logic. This general classification of exploits and vulnerabilities will be used throughout this paper. Any 
attack which relies on modification of the control flow of a program (buffer overflows, pointer attacks, 
integer errors and format string vulnerabilities all fall into this category) will be referred to as a control-flow 
attack. 
 

History of Anti-Exploitation 
 
In order to set the scene for an examination of Windows anti-exploitation technology, it is useful to quickly 
summarise the key historical developments which have shaped this field. It is not intended, however, to 
provide a truly comprehensive examination of these tools. Where possible we have provided relevant 
references, which can be consulted for more detailed descriptions. However, understanding the basic 
concepts outlined will greatly simplify the discussion of the design and implementation of the current 
generic technology for Windows. 
 
Most significant developments in the field have been under UNIX. In that realm, there are three main 
ways in which protection can be added – compiled-in, linked or injected and via kernel modifications. 
 

Compiled-In 
 
Compiled-in systems use compiler modifications to create program binaries that are more resilient to 
control flow attacks. The best known among these systems is Crispin Cowan’s StackGuard3, which was 
also used as the basis for the Microsoft /GS compiler option, discussed in much more depth below. Other 
systems along these lines include ProPolice / SSP4, from IBM Research and StackShield5. Each of these 
three systems takes a different basic approach, but all result in constructing stack frames that attempt to 
detect buffer overflows at the point of compromise (as the function returns). In our terminology these are 
vulnerability focused approaches. Simplified, the three approaches are as follows: 
 
StackGuard coined the term “stack canary”, for a value that is placed in front of the saved return address. 
The concept is simple – any overflow will trample the canary before it is able to modify the return address. 
When the function returns, the canary can be checked against the stored value – a mismatch indicates 
that something has gone wrong.  
 

                                                 
3 C. Cowan et al. StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In USENIX 
Security Conference, January 1998. online at http://sherry.ifi.unizh.ch/cowan98stackguard.html 
4 H Etoh, GCC extension for protecting applications from stack-smashing attacks, 
http://www.research.ibm.com/trl/projects/security/ssp/, June 20, 2005 
5 Vendicator, Stack Shield, http://www.angelfire.com/sk/stackshield/, June 20, 2005 
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As with many things, however, the devil lies in the details. We will discuss some implementation 
limitations in this concept when examining the Microsoft /GS compiler option. StackGuard is one of the 
projects that can be considered to have significantly influenced the direction that Microsoft themselves 
have taken with the built-in anti-exploitation features in Windows 2003 and Windows XP, Service Pack 2. 
 
StackShield takes a different approach, using a “global ret stack”, which is really just another way of 
protecting the return address. As each new stack frame is added, the correct return address is pushed 
onto a “ret stack”, which is stored on the heap. Under Stack Shield, the process stack layout remains the 
same – the checking is all done in the function epilog.  
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While StackShield implements the same basic concept as StackGuard (and the attacks against them 
often appear in the same papers) it contains some other interesting ideas. “Return range checking” will 
prevent attempts to return to an address higher than a given base – intended to stop returns into the 
stack and heap. Ranges are also checked when a call is made based on a function pointer (indirect calls) 
– designed to prevent control flow hijacking by overwriting function pointers, which is a very common 
technique. These checks are not perfect; Gerardo Richarte from CORE points out some important 
implementation errors with StackShield’s range checking in “Four different tricks to bypass StackShield 
and StackGuard protection”6. However, although it was implemented poorly in StackShield, the generic 
approach of checking the validity of caller and return addresses is used extensively in 3rd party Windows 
anti-exploitation solutions. 
 
The final compiled-in solution examined is ProPolice / SSP, from IBM Research. Propolice also uses a 
stack canary, but adds a refinement also adopted by later versions of StackGuard and the Microsoft /GS 
option – the canary also protects the saved stack pointer (EBP). This sensible modification makes several 
of the public attacks against StackGuard and StackShield infeasible – some specific EBP attacks such as 
the off-by-one technique are discussed in Phrack 55, 0x087 as well as in Richarte8. 
 
The real innovation in ProPolice, though, is the “ideal stack layout”. The idea here is to re-order variables 
on the stack, such that the resultant damage from an overflow is minimized – pointers are stored below 
overflow-prone buffers, which are placed directly before the stack guard value. In this way a buffer 
overflow is unable to modify a stored function pointer. The layout differences are shown below. 
 

 
 

                                                 
6 G Richarte, Four different tricks to bypass StackShield and StackGuard protection, 2002, 
http://www1.corest.com/files/files/11/StackguardPaper.pdf 
7 Klog, Frame Pointer Overwrite, 1999, http://www.phrack.org/show.php?p=55&a=8 
8 Above, note 6 
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It should be mentioned, however, that due to an implementation error very small arrays will not be 
correctly re-ordered. 
 

Compiled-In Solutions – Summary 
 
Unfortunately, these systems leave very important areas of exploitation untouched. None of them provide 
any protection for heap memory (probably the biggest flaw), and all of them benefit greatly from the 
additional protection of a non-executable stack (discussed further below). In fact, when Wilander and 
Kamkar tested all of the solutions above against a variety of control-flow attacks in 2003 they noted that 
that “none of these can handle the diverse forms of attacks known today. In practice at best 40% of the 
attack forms were prevented and another 10% detected and halted, leaving 50% of the attacks still at 
large.”9 
 
However, these seminal solutions have influenced some of Microsoft’s own direction in the anti-
exploitation field. Third party solutions, however, are unable to take advantage of compiled in protection 
for the huge majority of Windows executables, so those solutions have evolved along very different lines. 
 

Linked / Injected 
 
Baratloo, Tsai, and Singh introduced a novel approach in 2000 with libsafe and libverify10. Libsafe is a 
dynamically loaded library which replaces “unsafe” function calls such as strcpy(), strcat() and sprintf() 
with safer equivalents. The original functions are ‘hooked’, and a new version of the function – including 
check code – is executed instead. Function hooking is a technique which is encountered frequently in the 
Windows anti-exploitation world, although we were unable to identify any Windows implementations 
which replace dangerous calls with “safe” replacements. 
 
Libverify is a generic stack protection approach which uses runtime code injection to hook every userland 
function with an entry and exit wrapper. Although the authors describe the solution as “similar to 
StackGuard” it is actually more similar to Stack Shield – the prolog pushes the correct return value onto a 
“ret stack” which is checked on return. Also, the canary values are actually the correct return addresses, 
unlike StackGuard’s terminator or random cookies. 
 
The most interesting thing about the libverify design is that it does not require recompilation. As part of 
the dynamic linking process, the library’s _init() code is run, which installs the hooks. A similar approach is 
possible under Windows, with Dynamic Link Libraries (DLLs) and the DLLMain() function. This approach 
is much more suitable for a third party extension to Windows than the compiled in options discussed 
above, and has been adopted and extended by several third party vendors. Simple injection via 
DLLMain() is prone to a race attack in some cases, so some systems use alternate techniques such as 
hooking the process creation routines in the kernel. 
 
This method of implementation was innovative, with its ability to protect existing systems without 
recompilation, and the performance of libsafe in particular is extremely impressive (in some cases, libsafe 

                                                 
9 J. Wilander, M. Kamkar. A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention. In 
Proceedings of the 10th Network and Distributed System Security Symposium, 2003, online at 
http://www.ida.liu.se/~johwi/research_publications/paper_ndss2003_john_wilander.pdf 
10 A. Baratloo, T. Tsai, and N. Singh. Transparent Run-Time Defense Against Stack Smashing Attacks. In 
Proceedings of the USENIX Annual Technical Conference, 2000, online at 
http://www.research.avayalabs.com/project/libsafe/doc/usenix00/paper.html 
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functions outperformed their “dangerous” equivalents). Unfortunately, the security performance was not 
notably better than the stack protection systems discussed above. Security testing results can be seen in 
Wilander11. 
 

Kernel 
 
No discussion of anti-exploitation technology would be complete without an examination of PaX. It might 
be also argued that no discussion of UNIX anti-exploitation is complete without a reference to the vitriolic 
mailing list exchanges between the proponents of ProPolice vs StackGuard, PaX vs OpenBSD’s W^X 
and all things in between. Virtually any bugtraq search on those keywords around 2003 will turn up a 
litany of highly amusing threads – a cogent reminder that anything written to a mailing list remains in the 
public domain forever. 
 
The PaX project12 aims to apply many low-level changes to UNIX, most of which are far too complicated 
to explain in detail in this paper. The PaX documentation, however, is excellent, and should be required 
reading for any prospective developer of anti-exploitation technology – even on Windows. In fact, there 
are several Windows projects which use “PaX technology” to a greater or lesser degree (and with variable 
success). 
 
Referring to the “where things fit in” diagram (figure 1) PaX is a set of “exploit focused” features, rather 
than a “vulnerability focused” approach, which is why it is normally combined with one of the anti-stack-
smashing approaches discussed above. For example, Hardened Gentoo13 uses PaX in combination with 
SSP, formerly known as ProPolice (discussed above). 
 
The key concepts implemented in PaX are below. 
 
Address Space Layout Randomization (ASLR) 
 
PaX allows virtually every part of the process address space to be randomized. This feature is designed 
to complicate exploitation by making the attacker “guess” the program control flow, and thus make attacks 
harder to write. 
 
In a basic buffer overflow attack, the attacker has two goals – firstly code injection (a new node in the 
Control Flow Graph) followed by a control transfer to redirect execution into the malicious code (a new 
edge). A quick review of introductory buffer overflow material will show that selecting an appropriate 
return address poses the greatest challenge, and is the most difficult technique for novice researchers to 
master. In simple terms, once the attacker is able to control the flow of execution, they need to decide to 
where it should be redirected. A mistake will almost certainly cause a program crash, which is useless to 
the attacker.  
 
Many approaches have been created to simplify this process, but the simplest is the “trampoline”. 
Trampoline attacks involve accessing the address of the payload via a register, even if the absolute 
address will not be known in advance, and then finding a sequence of instructions in a fixed location, 
such as a library, that will execute a relative call such as “CALL [ESP+20]”. The key to the trampoline 
attack is that the attacker can now use relative addressing to locate the payload, instead of absolute 
addressing. 
                                                 
11 Above, note 9 
12 Homepage of the PaX Team, http://pax.grsecurity.net/ 
13 Hardened Gentoo, http://www.gentoo.org/proj/en/hardened/ 
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Other exploitation techniques involve overwriting function pointers in predictable locations, like the 
Unhandled Exception Filter in Windows, or entries in the destructors (.dtors) segment in linux. Unlike 
trampoline attacks, these techniques are primarily designed to keep control of execution in cases where 
vulnerable functions do not return cleanly after the exploit. In such cases the vulnerable application is 
probably in the process of crashing – for example if the entire stack or heap has been corrupted, or if a 
stack canary has been trampled. 
 
Both of these techniques are complicated by ASLR. With an address space that has been obfuscated by 
ASLR, the attacker doesn’t really know the address of anything, which means that they can no longer use 
well-known addresses and offsets to redirect execution. ASLR is applied to the general layout of the 
process, randomizing the base locations of segments, libraries, as well as the stack and heap. 
 
Attacking ASLR is possible, but an information gathering phase is required. A good outline of this can be 
found in Phrack 59, 0x0914. In summary, the author demonstrates the use of a format string bug to gather 
information about the target stack, allowing the address of libc to be determined – this is followed by a 
standard return-into-libc attack.  
 
Another form of information leakage attack against ASLR was described in 200415. This attack uses a 
blind “Oracle” brute force technique. Attacking a theoretical Apache stack overflow, the researchers 
guessed the base address of libc by using a ret-libc attack to attempt to call usleep(). When the base 
address was guessed incorrectly, the thread would crash and be respawned, but when the address of libc 
was guessed correctly the process would sleep – an information leak which was detectable remotely. 
Once the libc base address was known, a standard return-into-libc attack was possible. 
 
However, attacks against ASLR which cannot exploit some kind of information leakage vulnerability are 
unlikely to be successful. The first attack above requires a format string vulnerability, and the second is a 
multi-shot exploit, which requires a multi-threaded server. 
 
A very minor form of randomization has been introduced by Microsoft in their own early anti-exploitation 
efforts, with the PEB (Process Environment Block) base location being slightly randomized on XPSP2. 
This is discussed further below. Some 3rd party solutions attempt to implement ASLR on Windows, but 
Windows binaries are more sensitive to relocation (in particular some modules cannot be relocated), so 
these approaches are fraught with compatibility issues – this is also discussed further below. 
 
PAGEEXEC / SEGMEXEC 
 
The other key feature of PaX is to provide non-executable memory pages. For IA-32, PaX takes one of 
two approaches. It can provide an emulated NX (Non eXecutable) bit using PAGEEXEC at a performance 
penalty, or provide a solution with very low performance overhead using SEGMEXEC, but at the cost of 
halving the userland virtual address space (1.5GB instead of 3GB)16. Before discussing the 
implementation details, we should briefly cover the overall goal of NX memory pages. 
 

                                                 
14 T. Durden, Bypassing PaX ASLR protection, Phrack 59, Article 9, 2002, available at 
http://www.phrack.org/show.php?p=59&a=9 
15 H Shacham, M Page et al, On the effectiveness of address-space randomization, in Proceedings of the 11th ACM 
conference on Computer and communications security, 2004 online at 
http://www.stanford.edu/~blp/papers/asrandom.pdf 
16  User space in 32-bit linux is 3GB, unlike 32-bit Windows which divides the 4GB of addressable memory into two 
equal halves by default. This can actually be modified using the /3GB boot.ini switch. 
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To return again to Control Flow Graphs, recall that most simple control-flow attacks rely on code-injection, 
followed by a control diversion. Injected code will always be in writeable memory – attempts to inject code 
directly into, for example, the read-only .text segment will result in an access violation, and usually a 
crash. Once the code is injected, the next goal must be to redirect execution such that the injected code 
will be run. Therefore, the key to NX protection is to disallow the execution of code from writeable memory 
– in other words, any data that is in a writeable page should never be interpreted and run as code. This is 
well summarized by the OpenBSD technology equivalent W^X (W xor X) – You can Write to it, or eXecute 
it, but not both. 
 
This approach is far from new. As early as 1997, experts such as Casper Dik and Solar Designer had 
created patches to implement NX stacks on major UNIX operating systems17,18. PaX extends this 
approach to cover the stack as well as the process heap; indeed potentially any page can be marked NX. 
Heap vulnerabilities were once considered to be unexploitable, even by experts – however they are now 
the subject of “cookbook” exploitation recipes, so extending NX protection to the heap is essential. 
 
On IA-32 (normal Intel x86 processors), there is no direct CPU support for NX memory pages. On other 
architectures such as SPARC, Alpha and PowerPC the NX bit is supported in hardware. So, on 
processors that provide hardware support for NX, PaX will use the NX bit via the PAGEEXEC 
mechanism, at zero performance cost. For IA-32 things are more difficult. 
 
The technical details of PAGEEXEC for IA-32 are beyond the scope of this paper, and are discussed in 
the PaX documentation19. In summary, it marks NX pages as not-present at the hardware page-table 
level. When those pages are accessed a page-fault will always be generated. PAGEEXEC code then 
handles the fault and checks to make sure that EIP is not within the same range – which of course would 
mean that execution had been transferred to an NX page. Assuming that is not the case, the memory 
access is then allowed. PAGEEXEC’s performance is variable, because it depends heavily on how often 
these NX-related page faults are raised. 
 
SEGMEXEC is actually a brilliantly simple concept, although the official PaX documentation is somewhat 
daunting. Essentially, SEGMEXEC splits the 3GB of addressable user-space memory into two halves. 
The bottom half is just as normal, but every memory page which is executable is copied into the top half – 
resulting in a perfect mirror copy with all of the data pages snipped out (such as the stack, heap, .bss 
etc). Then, there is a “trick”... 
 
Intel protected mode architecture uses “selectors” to translate offsets into linear memory addresses. In 
other words, when you access address 0x1000 in the code segment (EIP is always assumed to access 
the code segment) you are really accessing [base address from CS selector] +0x1000. This is extremely 
well explained in the IA-32 protected mode architecture documentation20. The SEGMEXEC “trick” is to 
modify the CS selector so that the base is at 0x6000000 (1.5GB) instead of 0x0. Now, whatever happens 
to EIP it is “trapped” in the top half of addressable memory (ie [0x6000000]+some offset), where only the 
code pages are mapped. Another way to think about it is that the code can be still be injected, but EIP 
can never be redirected to the hostile code. The worst that can happen is for EIP to point to the upper 
mirror of the payload address, which will be empty and result in a segmentation fault. 
 

                                                 
17 Solar Designer, StackPatch, http://www.openwall.com/linux 
18 C. Dik, posting to comp.security.unix, January 2, 1997 
19 PaX Team, PAGEEXEC Documentation, http://pax.grsecurity.net/docs/pageexec.txt 
20 Intel Corporation, Overview of the Protected Mode Operations of the Intel Architecture, 
http://www.intel.com/design/intarch/papers/exc_ia.htm 
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SEGMEXEC under linux operates at very low performance overhead, due to the fact that the core 
mmap() memory allocation routines have been re-written. This is obviously not possible under Windows, 
but the general technique could still be viable with some modifications. 
 
Sadly, the PaX project officially terminated on April 1, 2005 due to a critical bug in the core enabling 
technology of the SEGMEXEC feature21. The project has been transferred to the GrSecurity team, and at 
the time of writing it is not yet known what effect this will have on PaX’s long term development. 
 

Other Projects 
 
Interested readers are also invited to investigate a few other open source anti-exploitation projects which 
were never adopted, adopted and abandoned or simply not completed. 
 
Oded Horowitz proposed a fascinating compiler modification called “Big Loop Integer Protection” in 
Phrack 60, 0x0922. Integer “overflows” are really just delivery mechanisms for stack or heap based 
overflows. The crux of his approach was to recognize that Integer vulnerabilities rely on the fact that the 
integer is a counter, and working to detect counters that suddenly became much too large. 
 
The OpenBSD catch cry is “secure by default”, and several of the technologies and approaches adopted 
by OpenBSD repay further study; in particular systrace23, written by Niels Provos. Systrace is the first 
system mentioned in this paper which is based on behavioural enforcement (also casually referred to as 
“sandboxing”), which will be discussed in much more depth later. 
 
In 2003, Roberston, Kreugel et al proposed a GNU libc modification to Doug Lea’s malloc aimed at 
preventing heap overflows24. Much like StackGuard and similar systems, it proposed a heap “cookie”. For 
some reason, no major operating systems seem to have real-world implementations of this technique – 
except Windows. 
 
Crispin Cowan, of StackGuard fame, also proposed several other interesting ideas, among them 
“FormatGuard”25, a C Pre-Processor macro which “defanged” dangerous format strings, and 
“PointGuard”26, which aimed to protect all pointers at runtime. 
 
PointGuard is a particularly important milestone project. To state the obvious, all control-flow attacks must 
at some point divert the control flow. This is virtually always done by attacking a pointer – either a function 
pointer, a saved return address, a relative linear address, saved longjmp buffer, exception handler or any 
of a myriad of methods. PointGuard ambitiously set out to protect most pointers while they were in 

                                                 
21 Pageexec, PaX privilege elevation security bug, posting to bugtraq mailing list, March 5, 2005, 
http://www.securityfocus.com/archive/1/392348/2005-03-05/2005-03-11/0 
22 O. Horovitz, Big Loop Integer Protection, 2002, Phrack 60 article 9, http://www.phrack.org/show.php?p=60&a=9 
23 N. Provos, Systrace - Interactive Policy Generation for System Calls, 2003, homepage at 
http://www.citi.umich.edu/u/provos/systrace/ 
24 W. Roberston, C Kruegel et al, Run-time Detection of Heap-based Overflows, 2003, in proceedings of 17th Large 
Installation Systems Administration Conference (LISA), online at 
http://www.usenix.org/publications/library/proceedings/lisa03/tech/full_papers/robertson/robertson.pdf 
25 C. Cowan, M. Barringer et al, FormatGuard: Automatic Protection From printf Format String Vulnerabilities, 2001, in 
proceedings of 10th USENIX Security Symposium, online at 
http://www.usenix.org/events/sec01/full_papers/cowanbarringer/cowanbarringer.pdf 
26 C. Cowan, S. Beattie et al, PointGuard: Protecting Pointers from Buffer Overflow Vulnerabilities, 2003, in 
proceedings of 12th USENIX Security Symposium, online at 
http://www.usenix.org/events/sec03/tech/full_papers/cowan/cowan.pdf 
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memory (pointers are safe while in CPU registers) using an encryption routine. In effect, PointGuard was 
designed to enforce Control Flow, although without trying to model it or “understand” it.  
 
Having examined the key historical approaches, we can now examine the new anti-exploitation 
technologies recently introduced by Microsoft. 
 

Windows Anti-Exploitation Technologies 
 
In this section we will examine the anti-exploitation features recently added to Windows by Microsoft. It is 
worth noting that most of these technologies are available only on Windows XP, Service Pack 2 (XPSP2) 
and Windows 2003, Service Pack 1 (W2K3). The exceptions are the /GS and /SAFESEH compiler 
options, discussed below, which can protect any application compiled with Visual Studio .NET 2003 – but 
the Windows binaries from older operating systems have not been compiled this way, so only third party 
applications would be protected.  
 
Here is a quick summary of the new technologies: 
 

Protection Applies Focus 
/GS Compiler Option (stack cookies) Per App Detect Attack 
Compiler Stack Layout Optimization Per App Complicate Exploitation 
Heap Cookies Global Detect Attack 
Safe Unlinking Global Detect Attack 
PEB Randomisation (XPSP2) Global Complicate Exploitation 
Remove Pointers in PEB (2K3) Global Complicate Exploitation 
Pointer Encoding, UEF (2K3), VEH Global Complicate Exploitation 
NX (Hardware DEP) Configurable Detect Attack 
Improved SEH security Global / Per App Complicate Exploitation 
 

Protecting the Stack 
 
The key technology available for protecting the stack in Windows is the /GS compiler option in Visual 
Studio .NET 2003. Essentially, /GS is very similar to StackGuard, with the minor modification that the 
security cookie also protects the saved frame pointer on the stack (usually referred to as EBP). 
Additionally, however, VS.NET 2003 also performs some optimization of the variables on the stack, in a 
similar manner to ProPolice / SSP – however the efficacy of these layout optimizations were questioned 
at CanSecWest in May, 200527 by the principal author of ProPolice. 
 
One particular modification which was made between VS.NET versions 7.0 and 7.1 was to copy the 
function pointers to local exception handlers below local variables – recall that a buffer overflow runs 
“upwards” – making it impossible to overwrite these pointers with a classic buffer overflow. While it is 
possible that this was done in response to attacks such as those described by Cigital28, Brandon Bray 

                                                 
27 H. Etoh, Stack Protection Systems: (propolice, StackGuard, XP SP2), 2005, Presented at CanSecWest 2005, 
online at http://cansecwest.com/core05/propolice-cansec2005.ppt 
28 C. Ren, M. Weber, G. McGraw, Microsoft Compiler Flaw Technical Note, 2002, online at 
http://www.cigital.com/news/mscompiler-tech.pdf  
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from the Microsoft Visual Studio Team suggests an alternate explanation in his blog29 “The VC 2003 
release had a short development cycle, so not all of our ideas to improve /GS were implemented. The 
Whidbey product cycle gave us the opportunity to do more.” 
 
David Litchfield, however, pointed out several other approaches to bypassing this generic stack protection 
in Windows 2003 SP030. These attacks brought into the spotlight some legacy implementation issues 
which undermined the security effect of the /GS compiler modification. 
 

1. EXCEPTION_REGISTRATION structures, used by Structured Exception Handling are stored on 
the stack. Although the exception handler for the current call-frame is stored below any arrays 
and is safe from buffer overflows, the handler for the calling function (and any others) remains 
vulnerable. Overwriting pointers to exception handlers and provoking an exception (or just waiting 
for one to occur) is a well known attack pattern. 

2. Microsoft’s Safe Structured Exception Handling (SafeSEH) contained some baffling anomalies – 
for example allowing control to be dispatched to unregistered exception handlers on the heap. 
(discussed further below) 

3. The Security Cookie used in the stack protection is stored in the .data segment, and not marked 
as read-only – sometimes allowing an attacker to overwrite it with a known value. 

 
The key issues with the exception handling process have since been resolved, and much improved 
exception handling code is shipping in Windows 2003, SP1 and Windows XP, SP2, discussed further 
under SEH Security, below. 
 
Although there are many application specific flaws which may allow stack-based overflows to be 
successfully exploited, previously known generic attack patterns are no longer viable against XPSP2 and 
Windows 2003 SP1 
 

Protecting the Heap 
 
Microsoft recently introduced two new vulnerability focused technologies to protect the heap. Heap 
overflows are a vulnerability area that is receiving more attention in recent years – the annual number of 
CVE entries for heap overflows tripled between 2002 – 200431, and heap exploitation is now considered 
to be reliable across Windows 2000 and Windows XP pre-SP232. 
 
The general operation of heaps is beyond the scope of this paper, but some good general references 
(focused on exploitation) are “Vudo”33 “Once Upon a Free”34 and the indispensable Conover / Horovitz 
presentation from CanSecWest 200435. The most important concept to understand is that pointers to free 
blocks of heap memory are kept “on the shelf” when they are not allocated – this is known as a freelist. 
                                                 
29 B. Bray, Security Improvements to the Whidbey Compiler, 2003, in weblog ‘C++ Potential’, 
http://blogs.msdn.com/branbray/archive/2003/11/11/51012.aspx 
30 D. Litchfield, Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 
Server, 2003, http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf 
31 MITRE, CVE - Common Vulnerabilities and Exposures, http://cve.mitre.org/ (statistic based on the author’s coarse 
analysis of the CVE database, n=18 in 2002, n=53 in 2004) 
32 Conover, below, note 35 
33 M. Kaempf, Vudo - An object superstitiously believed to embody magical powers, 2001, Phrack 57, article 8, 
http://www.phrack.org/show.php?p=57&a=8  
34 Anon, Once upon a free(), 2001, Phrack 57 article 9, http://www.phrack.org/show.php?p=57&a=9 
35 M. Conover, O. Horovitz, Reliable Windows Heap Exploits, 2004, presented at CanSecWest 2004, online at 
http://cansecwest.com/csw04/csw04-Oded+Connover.ppt 
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When HeapAlloc() is called, Windows will check to see if it can recycle a block from a freelist before 
attempting to use fresh, unallocated memory. 
 
To return to Windows, the two new heap protection technologies are “safe unlinking” and “heap cookies”. 
 
Heap Cookies are an idea that seems to have first been formally proposed in 2003, in independent 
papers from Huang36 and Robertson, Kreugel et al37 although the fine details of the two proposed 
implementations vary. Certainly Microsoft seems to be the first vendor that has implemented them in 
production. The basic idea is almost identical to stack cookies – a ‘guard’ value is placed in the heap 
header, and is checked during heap operations which may be dangerous (for example during allocation), 
to ensure that corrupted blocks are not being allocated. One implementation limitation, however, is that 
the heap cookie is only 1 byte, and is therefore susceptible to brute force. 
 
The other improvement in XPSP2 and W2K3 is “safe unlinking”, which is essentially a small sanity check. 
In a doubly linked freelist, the blocks are linked by forward and backward pointers, like this: 
 
 

 
 
The forward and backwards links are normally known as Flink and Blink. 
 
Safe unlinking is performed to prevent a well known vulnerability pattern which allows for an arbitrary 
memory overwrite. When Block B is unlinked, the Flink and Blink pointers for A and C need to be 
updated. Although this is slightly simplified, imagine that Windows then tries to update Flink(A) by copying 
the value of Flink(B) to the location pointed to by Blink(B) – which was intended to copy “pointer to C” 
over to Flink(A). By corrupting these pointers, an attacker that controls Block B can now write a chosen 
32-bit value to any 32-bit location – this is known as the “4-byte overwrite”.  
 

                                                 
36 Y Huang, Protection Against Exploitation of Stack and Heap Overflows, 2003, online at 
http://www.cgisecurity.com/lib/AntiOverflows.pdf 
37 Above, note 24 
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The safe unlinking check is to verify that the Blink of the block pointed to by Flink is correct, and the same 
for the Flink of the block pointed to by Blink. In other words, if Flink and Blink have been corrupted, when 
the links are “followed” there will be no corresponding return pointers. To summarise that, Conover / 
Horovitz38 put it like this: 
 
B�Flink�Blink == B�Blink�Flink == B (Block to be unlinked) 
 
Conover, aka Shok, later described a technique at SyScan in December 2004 called “Unsafe Unlinking”, 
which allowed the described check to be bypassed in a few rare cases39, as well as outlining the 
remaining attack vectors against heap overflows on Windows XP, SP2. 
 
Another problem with the new checks is that they do not cater for a heap optimization feature called 
lookaside lists. Normally, new blocks are allocated from a freelist. During this allocation, the block is 
deleted from the freelist - at which point the safe unlinking check is performed and the heap cookie is 
checked for corruption. 
 
Lookaside lists optimize re-allocation, by keeping track of small, recently freed blocks, allowing those 
blocks to be handed out quickly in response to new requests without traversing the freelist. Manipulating 
the lookaside list directly to provoke a “~1K overwrite”, also known as the “4-n-byte overwrite” was 
already a public technique, and is documented in Reliable Windows Heap Exploits40. That attack first 

                                                 
38 Above, note 35 
39 M. Conover, XPSP2 Heap Exploitation.ppt, available at http://www.cybertech.net/~sh0ksh0k/heap/ 
40 In Conover / Horovitz, above, note 35 



   
 

 
eEye Digital Security White Paper 
Generic Anti-Exploitation Technology for Windows 
 

 
 

 16 

uses a 4-byte overwrite, as described above, to corrupt the lookaside list – but this attack would be 
prevented by the safe unlinking checks. 
 
However, Anisimov41 documents a newer technique which extends this to take advantage of an 
implementation problem with heap cookies – there is no integrity checking when blocks are allocated from 
a lookaside list42. In certain overflow scenarios the Flink pointer of a neighbouring block can be 
overwritten with an attacker-specified pointer. If that block is already in a lookaside list then on the second 
allocation request for a block of the selected size HeapAlloc() will return the pointer to up to 1016 bytes of 
attacker-chosen memory. The attacker then causes a copy operation that references this pointer and 
overwrites a large chunk of memory anywhere in the process address space. After the ~1K overwrite 
there are several possible exploitation techniques. Although this exploit approach is not guaranteed, 
Anisimov claims to have used it to create a working exploit for at least one real-world heap overflow.  
 

 
 
As a final note, a new performance-focused heap technology called the Low-Fragmentation Heap could 
potentially complicate exploitation in many scenarios since it uses a 32-bit key in the chunk header 
instead of the current 8-bit cookie, but virtually no applications appear to be using it43. 
 

                                                 
41 A. Anisimov, Defeating Microsoft Windows XP SP2 Heap protection and DEP bypass, 2005, online at 
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf  
42 Also described by Conover, above, note 39 
43 Above, note 39 
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SEH Security 
 
Exception handlers have traditionally been one of the most abused features in Windows exploitation. 
From a hacker’s point of view, the exception handler is code that will be run after something dangerous 
has happened, which makes it fragile. One of the generic exploitation patterns is to overwrite a pointer to 
an exception handler with the location of malicious code, and then to provoke (or just wait for) an 
exception. 
 
The definitive introduction to structured exception handling was written by Matt Pietrek back in 199744, 
and is still highly recommended background reading. 
 
Windows exception handlers are particularly prone to abuse, not least because the 
EXCEPTION_REGISTRATION structure used by Structured Exception Handling (SEH) for each function 
is stored on the stack, allowing it to be overwritten by stack-based overflows. Here is an example from 
Microsoft45: 
 

int vulnerable5(char * pStr) { 
    char buf[32]; 
    char * volatile pch = pStr; 
 
    strcpy(buf, pStr); 
    return *pch == '\0'; 
} 
 
int main(int argc, char* argv[]) { 
    __try { vulnerable5(argv[1]); } 
    __except(2) { return 1; } 
    return 0; 
} 
 

As can be seen, main() defines a local __try / __except handler. This will caused an 
EXCEPTION_REGISTRATION structure to be created in the stack frame of the main() function. When 
main() calls vulnerable5(), the stack frame for vulnerable5() will be below the main() frame, meaning that 
buf[] can overflow past its own saved return address and overwrite main()’s exception handler. Now, 
because an exception is raised before vulnerable5() returns, the stack cookie is never checked and the 
compromised exception handler is run. 
 
Another problem is that the Unhandled Exception Filter (UEF) (the exception handler of last resort) is 
stored in a fixed location for each Windows version46. Attacking the UEF is a well-known tactic when only 
a small overwrite can be achieved, for example with heap unlinking (such as Halvar’s 4-byte overwrite, 
discussed in Reliable Windows Heap Exploits47). 
 
In Windows XP, some improvements were introduced. The first was zeroing the CPU registers before an 
exception handler is called. This is in response to “trampoline attacks” (discussed also above) where 

                                                 
44 M. Pietrek, A Crash Course on the Depths of Win32™ Structured Exception Handling, in Microsoft Systems 
Journal, January 1997, online at http://www.microsoft.com/msj/0197/exception/exception.aspx 
45 B. Bray, Compiler Security Checks In Depth, 2002, available at http://msdn.microsoft.com/ 
46 More accurately, each KERNEL32.DLL version 
47 Above, note 35 
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attackers can analyse the contents of registers at the time of the fault, and then use an exception handler 
to “bounce” off a known address which contains a relative call, such as “CALL EAX”.  
 
The second major improvement was to deny the execution of exception handling code on the stack. This 
was to prevent a well-known technique which involved overwriting a stack-based SEH structure to redirect 
execution back into shellcode in the overflow data. This approach was used by the Sasser worm for 
Windows 2000 targets48. 
 
Microsoft’s proposed addition to the above protection, introduced in Visual Studio .NET 2003, was Safe 
Exceptions, or the /SAFESEH switch. In summary, Safe SEH works by producing a list of all valid 
exception handlers at the time the application is compiled and linked. When an exception occurs at 
runtime, the exception handler being used is only run if it is pre-registered – in other words trying to “re-
wire” exception handlers during a control-flow attack shouldn’t work. 
 
Microsoft also introduced a new internal function to NTDLL.DLL called RtlIsValidHandler to attempt to 
detect when control was about to be dispatched to attacker code. 
 
Unfortunately, some unusual implementation problems in Windows 2003 SP0 greatly reduced the initial 
effectiveness of this feature. David Litchfield outlined several possible attacks in 200349, and pointed out a 
key implementation error. Unregistered exception handlers would still be run as long as they were outside 
the address range of a loaded module, to allow for run-time code generation. While the specific check 
remained in place to prevent the system from running exception handlers from the stack, there were no 
such protections applied to the heap, or to any other area of memory. 
 
For example, Litchfield described an attack where a few bytes of static data in a memory mapped file (FF 
55 30) are interpreted as an instruction when execution is directed to that address (it forms the processor 
opcode for CALL DWORD PTR[EBP+0x30]), and will redirect execution back to the 
EXCEPTION_REGISTRATION structure that is under attacker control. This kind of “dual use” approach 
to data / opcodes has led to several interesting exploits over the years. 
 
Litchfield also described an attack where an existing exception handler could be abused as a trampoline 
to redirect control flow after the EXCEPTION_REGISTRATION structure overwrite. The handler referred 
to in that article was actually __except_handler3, which is the key function involved in the Visual C++ 
implementation of SEH. The Visual C++ runtime library layers additional functionality on top of the “raw” 
exception handling machinery provided by the OS, which is all well described in Pietrek’s article50. 
 
In Windows XP, SP2 and Windows 2003, SP1, Microsoft significantly improved the checking that is 
performed during the exception dispatch process. Unless software DEP has been deactivated, it is no 
longer possible to dispatch to an exception handler that is on a non-executable memory page, obviating 
the first attack described above using “raw” exception handling. Additionally, extra validation checks have 
been added to __except_handler3, which obviate the second attack using the C++ runtime library. It is 
important to note that the improved RtlIsValidHandler and the brand new __ValidateEH3RN provide 
protection against almost all types of SEH abuse even without CPU NX support and irrespective of 
whether or not the application has been compiled with /SAFESEH51. 

                                                 
48 P. Ferrie, F. Perriot, Mostly Harmless, in Virus Bulletin, August 2004, online at 
http://pferrie.tripod.com/vb/sasser.pdf 
49 Above, note 30 
50 Above, note 44 
51  Based on the author’s reverse analysis of ntdll.dll on Windows XPSP1, SP2, Windows 2003 SP0, SP1, publication 
of full findings pending. 
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. 

PEB Randomization 
 
The Process Environment Block is a structure which contains various pieces of useful information about 
the currently running process which code might need to access at runtime. The PEB is not well 
documented, but some more information can be found, for example, in an article from Relsoft 
Technologies52. 
 
One very small change in Windows XP Service Pack 2 was the slight randomization of the base address 
for the Process Environment Block (PEB), which has traditionally been 0x7ffdf000 for all NT based 
systems. The randomized locations vary only by a few pages, but that is enough to confuse shellcode 
that uses hardcoded addresses. For example, here is the start of the PEB from a random process on an 
XPSP2 machine: 
 

 
 
The PEB is an interesting target for hackers for a few reasons. 
 
Locating the Relative Virtual Address of API functions 
 
The PEB contains pointers to several important structures – for example a list of loaded modules and 
their base addresses. Shellcode usually needs to access functions from the Windows API; so the memory 

                                                 
52 A. Ionescu, Introduction to NT Internals, Part 1, 2004, http://www.relsoft.net/Articles/Process/part1.pdf 
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addresses of those functions must be discovered before they can be called. Simplified, one traditional 
method of doing this is as follows: 
 

1. Access the loader data (Ldr) in the PEB at offset 0x0c 
2. Walk one of the module lists in the loader data to find the module’s base address 
3. Read the module’s export table to find the RVA of the desired function 
 

The simplest way to proceed from there is to find addresses for GetProcAddress() and/or LoadLibrary(), 
which can then be used to supply the addresses of all other required functions. 
 
More detailed descriptions of walking the LDR can be found online53 and code to locate LoadLibrary by 
accessing the PEB and then locating KERNEL32.DLL is commonly available54. By rebasing the PEB, the 
initial offset is no longer constant. However, this should not be taken to imply that randomising the PEB is 
a solution to function address location. Other methods do exist which are not reliant on the PEB, for 
example sequential scanning for the module’s prolog and parsing the module’s export table directly. Or, 
more simply, the PEB can always be accessed by reference to the FS selector, ie: 
 
MOV EAX, FS:[30h] 
 
Overwriting Critical Pointers 
 
Some newer exploits are specifically targeting interesting pointers within the PEB itself – for example the 
recent public release of an exploit for an ASN.1 bitstring vulnerability55 uses a hardcoded address of 
0x7ffdf020 for the pointer to FastPEBLockRoutine(). The FastPEBLockRoutine is called when code wants 
to lock the PEB so that it can be modified – and it happens to be called during exception handling. In 
other words this exploitation trick is another variation of abusing code that is run after memory corruption 
has occurred. 
 
Interestingly, Microsoft have removed some of the interesting pointers from the PEB under Windows 
2003, so many exploits that use these methods are not effective for Windows 2003 systems. Specifically, 
the pointers FastPEBLockRoutine() and FastPEBUnlockRoutine()at PEB offset 0x020 and 0x024 have 
been removed. 
 
Running Shellcode in the PEB 
 
One last reason the PEB is interesting to attackers is because the memory pages where the PEB resides 
are both Writeable and eXecutable. Since the PEB has always been in a fixed location, attackers have 
the option of copying their shellcode to a known address in the PEB and then transferring execution to 
that location. This technique can be useful when an arbitrary memory overwrite is possible but the 
payload is difficult to locate – such as for heap overflows. For this reason, copying shellcode into the PEB 
and then using an overwritten pointer which is called during exit is the currently preferred method for 
universal and reliable heap exploitation on Windows 2000 and Windows XPSP156. PEB randomization 
can complicate this technique slightly, but since the address change is only very slight, an attacker can 
still “guess” a safe location to copy the payload with high reliability. 
                                                 
53 E.g. A. McDonald, FAR (Function Address Retrieving), in blog arnold.mcdonald, 
http://arnold.mcdonald.free.fr/php/Main.php?p=1007, 2004, accessed June 20, 2005 
54 In McDonald, above, note 53, also in LSD, Win32 Assembly Components, 2002, http://www.lsd-
pl.net/documents/winasm-1.0.1.pdf  
55 S. Eclipse, kill-bill, 2005, http://www.phreedom.org/solar/exploits/msasn1-bitstring/ 
56 In Conover / Horovitz, above, note 35 
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Having earlier examined PaX’s ASLR, the limited changes to the PEB base seem somewhat tame; 
additionally, because of the limited scope of the randomization there is a reasonable chance that the PEB 
will be based at 0x7ffdf000 in any case. However, for a “low cost” change the PEB randomization feature 
measurably complicates exploitation, making some well-known techniques less reliable. 
 

Pointer Security 
 
As mentioned briefly above, Microsoft have removed some pointers from the PEB in Windows 2003, 
making attempts to leverage small overwrites (such as the heap 4-byte overwrite) more difficult. This 
approach has also been extended to the UEF pointer in Windows XP SP2 and Windows 2003 SP1, and 
the VEH (Vectored Exception Handler) pointers in Windows 2003 SP1 only.  
 
An additional level of security has been added to these pointers by encoding them in memory (an XOR 
with a modified random seed). Legitimate dispatches to the UEF or a VEH will first call RtlDecodePointer 
to obtain the real pointer value. An attacker, however, is unable to predict the random seed – whatever 
value the attacker chooses to overwrite the pointer with, it will almost certainly be decoded into garbage, 
and the process will crash rather than jump to the attackers shellcode. The pointer encoding algorithm is 
described in depth in a paper by members of the Xfocus group57. The paper is in Chinese, but translates 
reasonably well with online translation services. 
 
The new pointer security is a tactical measure, but currently it works well to complicate the basic, well 
known attack patterns designed to leverage small overwrites into fully fledged code execution. 
 

NX Memory and Hardware Enforced DEP 
 
Although the basic operation of NX under Windows is fairly intuitive, it is worthwhile quickly summarizing 
the major concepts involved. 
 
Windows Data Execution Protection (DEP) is an architectural concept, implemented in software, which 
surrounds the way in which Windows will “perform additional checks on memory to help protect against 
malicious code exploits”. Hardware enforced DEP is the combination of DEP and CPU NX support. 
Software enforced DEP consists of the changes to stack and heap behaviour discussed above.  
 
Regarding NX memory pages, one common source of confusion arises from the fact that Windows 
already supports memory page permissions via the VirtualProtect() API call, allowing pages to be marked 
as non-executable - for example PAGE_READWRITE. These settings, however, only apply to the 
Windows virtual memory manager – in other words they are not reflected in the physical page table 
entries (PTEs) and are thus invisible to IA-32 CPUs.  
 
CPU support for marking a page as non-executable is a pure hardware feature, which can potentially be 
used by any operating system that supports it. First to market for the Windows desktop, AMD x86_64 
processors support an “NX bit”, with Intel following suit with “XD” (for eXecute Disable) on i915 based 
Pentium 4 processors. For the UNIX world, Alpha, PowerPC and Sparc have supported it for some time. 
 

                                                 
57 funnywei, jerry, Windows Xp Sp2� � � � , available at http://www.xfocus.net/articles/200412/762.html 
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Deeper details of how NX is actually implemented are definitely beyond the scope of this paper, 
interested readers should consult the programmer’s documentation for their CPU.  
 
It is important to know, though, that 32-bit operating systems can only access the Intel NX functionality 
when running with Physical Address Extension (PAE) mode turned on. PAE is an address extension 
technology first introduced in the Pentium Pro processor, which uses 36-bit physical addressing to allow 
high performance systems to use more than 4GB of RAM58. However, PAE is not generally turned on for 
desktop Windows OSes, and some applications and drivers have compatibility issues when running 
under it. 
 
Finally, the software side of the equation is covered in Microsoft documentation59. DEP can be enabled 
(or disabled) globally, and can be selectively disabled per-process. When an attempt to execute an 
instruction on an NX page is detected, an exception (STATUS_ACCESS_VIOLATION (0xc0000005), 
type 8) will be raised. In normal circumstances that exception would be unhandled, and the process will 
then terminate itself. 
 
Raising a standard exception is perhaps the most controversial decision in the Windows DEP 
implementation. When exception handling is invoked, a significant amount of user-land code is run before 
the process actually terminates itself, and that code has already been intensely scrutinized by attackers. 
As some researchers have pointed out60, it would be more secure to trap this exception in the kernel, 
before it is even transferred to the KiUserExceptionDispatcher() function in user mode. However, it is 
clear that such an implementation would violate the general principles of Windows structured exception 
handling. 
 
Previously discussed methods for bypassing Windows stack and heap protection are often generically 
applicable to a full NX implementation – in particular classic return-into-library methods which attack 
control-flow by using injected data with existing code (such as fake stack based function arguments). For 
this reason, NX in general and Windows Hardware Enforced DEP should not be seen as a panacea. 
 
However, the combination of stack / heap protection and NX complicates the standard exploitation 
patterns significantly. Stack protection will apply to all Windows applications and system components in 
XPSP2 and W2K3, but it only applies to applications which are compiled with the /GS option - so most 
third party applications will still be vulnerable. Safe SEH is rarely used by third-party application 
developers, although Windows components use it on XPSP2 and W2K3. Heap protection is implemented 
as changes to the heap allocation and deallocation routines, so it will apply to all applications running on 
XPSP2 and W2K3. 
 

                                                 
58 Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Volume 3, 2005, section 3.8, available at 
http://developer.intel.com/design/pentium4/manuals/index_new.htm 
59 S. Andersen, V. Abella, Changes to Functionality in Microsoft Windows XP Service Pack 2, Part 3, 2004, 
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx 
60 In Litchfield, above, note 30 
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Summary  
 
Overall, the security changes in XPSP2 and W2K3 are much further reaching than the few discussed 
here, and can mitigate attacks at many levels before the anti-exploitation features come into play. The 
anti-exploitation technology itself represents a giant improvement over earlier Win32 operating systems. 
Yet, even considering the combination of all the new Windows technologies, some attacks remain viable. 
These attacks are mainly due to the implementation problems previously discussed, and would be greatly 
constrained by wider adoption of hardware NX and improved integrity checking in the heap allocation and 
free routines. For now, the combination of stack cookies and the new SEH security has not been publicly 
bypassed, although heap overflows remain dangerous, with documented attack patterns in the public 
domain.  
 
The table below summarises example application-generic attack patterns that are still effective against 
the new anti-exploitation technologies in W2K3 and XPSP2. In the table, we have ignored the fact that 
PEB randomization is not present on W2K3, since it makes little difference; although shellcode 
developers will need to avoid module location code that uses hardcoded PEB offsets. 
 
 

Target OS Stack Overflow Heap Overflow 
 
XPSP2 / W2K3 

• /GS compiled binaries 
• Safe Unlinking 
• (PEB Randomization) 
• Safe SEH 

 
 
 

No generic attack patterns 
currently known. 

 

Safe Unlinking bypass or 
Lookaside List overwrite + 1k 
overwrite � multiple 
techniques to keep control 
 
 
Author: Conover61 
Ease: Very Hard 
Reliability: Low 
Re-usability:  Medium 

 
XPSP2 / W2K3 

• /GS compiled binaries 
• Safe Unlinking 
• (PEB Randomization) 
• Safe SEH  
• NX (Hardware DEP) 
 

 
 
 

No generic attack patterns 
currently known. 

 

Safe Unlinking bypass or 
Lookaside List overwrite + 1k 
overwrite onto stack � ret-libc 
 
 
Author: Anisimov62 
Ease: Very Hard 
Reliability: Low 
Re-usability: Low 

Ease:  
 
 
Reliability:  
 
Re-usability 

Extremely unscientific assessment of the difficulty of constructing the attack, also includes some 
consideration of the likelihood that a totally arbitrary vulnerability will be exploitable with this pattern 
 
Similarly unscientific assessment of the reliability of a correctly written exploit against a vulnerable target  
 
Likelihood that the attack could be re-used to exploit another vulnerable application with minimal 
modification 

 
 

                                                 
61 Above, note 35 
62 Above, note 41 
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3rd Party Anti-Exploitation Technology for Windows 
 
For many Windows users, upgrading to XPSP2 or W2K3 is impossible for application compatibility or 
commercial reasons. This means that those users are unable to benefit from the Windows anti-
exploitation features discussed above. To exacerbate the issue, operating systems such as Windows NT 
4.0 – which is still widely deployed on production systems in many industry verticals – have passed 
beyond the limits of Microsoft’s support lifecycle. This means that no patches will be provided for new 
security issues unless the user purchases an expensive extended support contract; and even then there 
is no guarantee that a patch will be produced at all. For these users the only options are to turn to 3rd 
party solutions, or live with existence of critical vulnerabilities. 
 
To meet the need for backwards compatibility, as well as to address some of the perceived shortcomings 
in Microsoft’s own protection mechanisms, 3rd party vendors have devised several approaches to generic 
anti-exploitation. 
 
To avoid any possible controversy, only the major techniques used by 3rd party applications will be 
covered – no specific products will be mentioned. Other researchers have investigated individual 
products, for example an excellent article by Jamie Butler and two anonymous authors in Phrack 62, 
0x0563 and a Blackhat presentation by iDefense64. It must be noted that an unfortunate limitation of this 
non-specific approach is that vendor-specific implementation flaws cannot be examined. For this reason, 
we recommend at least the above links for further reading on some of the implementation flaws that have 
been identified in various products. 
 
The first thing to note about 3rd party solutions is that almost all current techniques are exploit focused 
(see Fig 1). Vulnerability focused solutions tend to require either compile-time modifications or changes to 
core operating system functionality. Because the major operating system components such as the virtual 
memory manager the core heap routines like RtlAllocateHeap() are owned by Microsoft, any changes to 
their behaviour would be both difficult and fragile. Compiled-in solutions would require changes to the 
compilers used to build the core Microsoft system components, which is obviously impractical. 
 

                                                 
63 J. Butler, Anon, Anon, Bypassing 3rd Party Windows Buffer Overflow Protection, Phrack 62, Article 5, 2004, 
available at http://www.phrack.org/show.php?p=62&a=5 
64 P. Silberman, R. Johnson, A Comparison of Buffer Overflow Prevention Implementations and Weaknesses, 2004, 
available at http://blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf 
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Userland API Hooking 
 
This is the most common implementation of generic buffer overflow detection in commercial products. 
 
First, let us recap what is meant by function hooking. At the time when the protection mechanism is 
loaded, key API functions are modified, and a new prolog and epilog are “wrapped” around the original 
code.  
 
When used for buffer overflow detection in its simplest form, this new code runs at the entry point of the 
function and performs a check something like: 
 

1. What is the memory address of my caller? 
2. If that address is in writeable memory, assume buffer overflow 

 
Following the paradigm that code should never be executed in writeable memory. 
 
For performance reasons, only a selection of userland APIs are hooked, based on the observation that 
the vast majority of real-world shellcode will contain calls to one of these key APIs – for example the 
LoadLibrary family and GetProcAddress family, which are used to obtain the addresses for many other 
functions. To use a simplistic analogy, these checks are like booby-traps. As soon as shellcode calls a 
“trapped” API, the protection software can terminate the process – without calling long and vulnerable 
Windows exception handling routines. It must be noted, of course, that shellcode that doesn’t call any 
trapped functions can run unimpeded.  
 
The advantage of this approach is that it is backwards compatible across all NT based systems, and can 
protect the heap as well as the stack. Another key advantage is that it bypasses structured exception 
handling – as should be clear from the previous section, this mitigates many possible attacks. 
 
There are a few problems however, covered well in Butler’s phrack article65, which mean that an attacker 
who has analysed the protection method will almost always be able to bypass them under lab conditions. 
However, even fairly simplistic API hooking systems can provide very effective protection against the 
overwhelming majority of exploits currently seen in the real world. 
 

                                                 
65 Above, note 63 
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Return address checks 
 
Several checks can be made to ensure that the return address presented to a hooked API is legitimate. 
One refinement which is added by various products is to ensure that the function’s return address 
immediately follows a call or jump, known as “ret follows call”. 
 

push    eax    ;this opcode is not a control transfer 
lea     eax, [ebp+var_4] ;so this is not a valid return address! 
push    eax    ; 
push    0FFFFFFFFh  ; 
call    HookedAPI   ;call to a hooked function 
mov     ebx, eax    ;valid return address (ret-follows-call)  

 
During an attack such as a return-into-libc, the attacker aims to execute a library function with their own 
malicious function parameters. However, at the point where the API is about to return the attacker 
normally wants to keep control of execution. To do this, they will supply a fake return address as part of 
the malicious stack frame, and execution will be transferred to that address after the API function has 
completed. It is very likely that the attacker wants to transfer execution to some random address that 
contains more malicious code (or at least attacker chosen code) and that this code is outside the normal 
control-flow of the program. 
 
To complicate such attacks, the protection software checks the instruction immediately preceding the 
proposed return address to ensure that it is a control transfer instruction – if it is not then there is no 
legitimate way execution could have reached the hooked API. By policing this fairly simple rule, protection 
systems are able to further complicate exploitation. 
 
Another obvious check is to ensure that the return address lies within non-writeable memory. As 
discussed above, StackShield implemented a basic version of this check called “return range” checking, 
which was quick (since it used easily calculated ranges) but vulnerable to abuse66. Some enhancements 
to this approach are discussed below. 
 

Forward Emulation 
 
An interesting refinement to the API hooking technique is to perform limited x86 emulation, to attempt to 
detect multi-instruction trampoline sequences. Much exploitation research has been done into ways to 
keep control of execution while “bouncing” off multiple instruction sequences. Early “trampolines” aimed 
to transfer execution to known opcode sequences which would return execution to the payload such as 
CALL EAX or PUSH EAX / RET. Although these attacks were initially devised to transfer execution to 
shellcode when the exact address of the payload was unknown, they also have the effect of confusing 3rd 
party protection. For example, API hooks that attempt return range checking to verify that return address 
are outside the stack or heap will be fooled by trampoline sequences in a module that bounce execution 
directly back onto the stack. Initially, simple checks could be used to detect these kinds of trampolines, 
mostly looking for opcode signatures, but those checks are, in turn, defeated by increasing the complexity 
of the trampoline code being used. 
 

                                                 
66 For example, in Richarte, above, note 6 
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As an attack feasibility study, eEye researchers presented an automated tool (EEREAP)67 at BlackHat 
USA 2004 which was designed to find instruction chains that would return execution to a given point. 
EEREAP was able to find chains that would return execution to an attacker buffer which were up to 14 or 
15 instructions, or even longer – obviously this would frustrate simplistic “trampoline” analysis. 
 
X86 emulators as EEREAP can themselves be used by protective mechanisms to follow execution chains 
at the proposed return address to determine if execution could land back in writeable memory, 
anticipating that attackers will soon move away from simple byte sequences like CALL reg, or PUSH reg / 
RET. Although forward emulation systems significantly complicate exploitation, there is a performance 
cost which must be borne in mind. 
 

Windows PAGEEXEC 
 
At least one product has attempted to use PaX’s PAGEEXEC IA-32 technique to provide emulated NX 
memory, using the CPU Translation Lookaside Buffer in much the same way as PaX, with some 
optimizations. This technique is discussed briefly above and in much more depth in the PaX 
documentation68. Unfortunately, this emulated NX technique is quite slow, so this is not a common 
approach, and the only commercial implementation we examined had severe limitations. 
 

Windows ASLR 
 
As mentioned above, one or two 3rd party products have attempted to implement PaX ASLR style 
protection for Windows. Unfortunately, although Windows PE-COFF binaries support relocation, many 
Windows subsystem and kernel components do not. In particular, KERNEL32.DLL, USER32.DLL and 
NTDLL.DLL cannot be re-based without jumping through hoops to trick the loader. This makes return-
into-libc style protection much less effective, since most “interesting” functions lie within those modules, 
as well as many useful opcode chains that can be used as trampolines. Additionally, there are extremely 
troublesome compatibility issues with layout randomization, so overall it cannot currently be 
recommended for Windows. 
 

Kernel API hooking 
 
Most 3rd party solutions also hook a selection of kernel APIs. 
 
Before we discuss the hooking approaches themselves, a quick note on implementation. Rather than 
“hooking” kernel functions, a more appropriate term would probably be “redirecting”, since the functions 
themselves do not need to be modified. Instead, a kernel structure called the Service Dispatch Table 
(SDT) can be re-wired. The SDT is simply a lookup table which translates “syscalls” to kernel function 
pointers. By modifying the SDT pointers the inspection code can be run instead of the “real” function. 
Assuming no attack is found, control is passed directly to the destination function. This approach could 
also be used in userland hooking, by modifying the Import Address Table – but it would be next to 
useless, since an attacker would simply jump directly to the function itself. Transferring control to the 

                                                 
67 D. Soeder, R. Permeh, Y. Ukai, Advanced Return Address Discovery using Context-Aware Machine Code 
Emulation, presented at Blackhat 2004, available at http://blackhat.com/presentations/bh-usa-04/bh-us-04-soeder/bh-
us-04-soeder-up.ppt 
68 Above, note 19 
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kernel, however, is always achieved through interrupts or call gates, so jumping directly to kernel code is 
not possible. 
 
There are two key reasons to hook functions in the kernel. The first is ubiquity – hooking a kernel syscall 
will allow all API calls that lead to that system call to be inspected, without the need to hook one of the 
many userland functions which might have the same effect – including variants such as ApiCallA() / 
ApiCallExA() for ANSI, ApiCallW() / ApiCallExW() for Unicode, or evasions such as directly calling one of 
the undocumented ntdll.dll versions of a kernel32.dll API like NtApiCall() or ZwApiCall(). 
 
The big downside to this method is that once operating in the kernel it becomes much harder to verify 
how the function was called. In other words, attempts to enforce the “caller in read-only memory” rule 
become very difficult, since by the time a kernel function is called, execution has normally passed through 
two or more “wrapper” functions, and the address of the original caller is several frames up on the 
userland stack. This is illustrated in the diagram below: 
 

 
 
Some systems attempt to track the caller by “walking the stack”. Recall that a stack frame usually (but not 
always) contains a saved frame pointer in EBP, so by following EBP we can find the stack frame of the 
function that called us. And by following the saved return address from that frame, we can find the 
previous caller, and so on. 
 



   
 

 
eEye Digital Security White Paper 
Generic Anti-Exploitation Technology for Windows 
 

 
 

 29 

This approach is trivial to defeat, however. If an attacker has control of the stack, they can create “fake” 
frames to defeat the checking mechanism. Overall, attempting to hook kernel system calls to enforce 
“caller in writeable memory” checks appears to be impractical. 
 

Mitigation of malicious activity 
 
The second reason to hook in the kernel, however, is to apply generic mitigation. Although slightly outside 
the scope of this paper as defined in Fig 1, mitigation techniques are an important part of 3rd party anti-
exploitation systems. 
 
Kernel-based mitigation approaches aim to police exactly which system actions can be taken by any 
process on the system – APIs called, registry keys accessed, files read or written and so on. The 
advantage to this approach is that it is able to enforce behaviour in all cases – both when there has been 
an attack which has successfully bypassed all anti-exploitation measures as well as for situations in which 
there has been no vulnerability exploitation at all. A good example of the second category is a Trojan 
horse, where the user has deliberately launched a malicious application. 3rd party vendors take two 
approaches to this enforcement, “known good” and “known bad” profiling. 
 
“Known Good” profiling, which can also be loosely referred to as “sandboxing”, attempts to define a full 
set of system calls that are accessible to a given application, and even to enforce acceptable parameters 
to those system calls – eg NtCreateKey might only allow an application to create keys in 
HKLM\Software\ApplicationA and not in HKLM\[...]\Run. Creating this set of permitted activities is known 
as “baselining” or “learning mode”. In the real world, usability compromises are always taken, creating a 
“looser” baseline, which again opens the door for malicious activity, especially given that modern 
attackers are fully capable of reverse engineering these protection mechanisms. 
 
“Known Bad” profiling attempts to select the most dangerous system calls such as 
WriteProcessMemory(), SetWindowsHook(), TerminateProcess() and then police all access to such calls. 
For example, almost no legitimate applications need to directly write into the memory space of another 
process, but it is a well known trick used by malware for a variety of purposes. Under Windows, many 
different malware techniques eventually result in a call to WriteProcessMemory(), so by controlling access 
to one API many attacks can be prevented. 
 
Known good profiling offers better potential security in theory. In practice, however, obtaining a tight 
baseline of “good” actions which still allows the system to function correctly in all legitimate cases is 
extremely challenging, and creates a significant usability challenge.  
 
Known bad enforcement can be applied much more rigorously, but does not cover all possible system 
calls. The advantage to known-bad systems is that they can be applied with minimal baselining and with 
negligible rates of false positives. In real world application, known bad enforcement aims to provide “good 
enough” protection, especially when used in combination with other technologies such as generic anti-
exploitation, application-aware firewalling and heuristic traffic inspection.  
 
When considering 3rd party systems which will be widely deployed across general purpose workstations, 
known-bad enforcement strikes a better balance between security and usability. For task-based systems 
like servers which change very rarely and have an extremely limited range of functions, known-good 
profiling may provide more rigorous security, if the specific implementation is suitable. 
 
In any case, both approaches add a valuable layer of enforcement capability to the existing Windows 
security features. 
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Self Defense 
 
The last point to note is that, since attackers may be aware of the operation of the third party software, it 
is quite possible that they will attempt to bypass its protection entirely. For example, software that uses 
predictable hooking preambles can easily be detected. Once the shellcode is “aware” that such protection 
exists it can attempt to bypass the mechanism. Butler’s Phrack 62 article69 analysed some early userland 
API hooking solutions which have few or no built-in defenses against reverse engineering or hook 
detection and evasion. This is not the case with all systems. 
 
By using techniques borrowed from malware and anti-disassembly tools, defensive software is able to 
protect itself from such attacks. Polymorphic hooks make it impossible for malware to use “hook 
signatures” to detect the protective mechanisms. Guard pages can act like landmines to prevent 
sequential scanning – since an attempt to read a guard page will trigger a STATUS_GUARD_PAGE 
exception and the process can be terminated. 
 
Defense against a local attacker is much more complicated. For malware that is running locally with the 
permissions of the logged-in user (such as most viruses and Trojan horses) there are a range of other 
possibilities. Full coverage of the current state of the art in attack and defense of 3rd party protection from 
a local attacker would require a paper of its own. However, some good introductory reading covering 
some newer attacks is available in Phrack 6270 and an article by 3APA3A and offtopic71. These papers 
cover runtime process infection, “shatter” attacks72 and scripting attacks that mimic user input (to disable 
the firewall, for example). Each of these specific attacks are mitigated in a handful of state-of-the-art 
solutions, but such generational advantages never last for long. 
 
While it is not something that most commercial vendors are keen to admit, the simple fact is that it should 
always be assumed that there is a way to bypass any kind of protection once code is running locally. 3rd 
party solutions can install significant barriers in terms of self-defense, but due to the “defender’s dilemma” 
an attacker will always be at an advantage. However, one simple step that can be taken to greatly 
complicate things for the attacker is to remove Administrator rights from users’ day-to-day accounts. 
 

Future Approaches 
 
As can be seen from the discussion above, generic anti-exploitation technology is a complex field. 
Literally dozens of solutions exist; each designed to address certain kinds of exploitation. In many cases, 
these solutions have been bypassed, improved and bypassed again. It is to be expected that both the 
built-in Windows approach and 3rd party solutions will continue to improve on an evolutionary basis. 
 
In comparison to the plethora of solutions that have been mooted and implemented to provide tactical 
coverage, relatively little revolutionary research has been done into addressing the problem of control-
flow attacks as a whole, and none of these approaches have progressed past the prototype stage into 
general availability for either commercial or open source systems.  
                                                 
69 Above note 63 
70 Rattle, Using Process Infection to Bypass Windows Software Firewalls, Phrack 62, Article 13, available at 
http://www.phrack.org/show.php?p=62&a=13 
71 3APA3A, offtopic, Bypassing client application protection techniques, 2004, online at 
http://www.security.nnov.ru/advisories/bypassing.asp?l=EN 
72 B. Moore, Shattering By Example, 2003, online at http://www.security-
assessment.com/Whitepapers/Shattering_By_Example-V1_03102003.pdf 



   
 

 
eEye Digital Security White Paper 
Generic Anti-Exploitation Technology for Windows 
 

 
 

 31 

 
Nevertheless, there are still a few research projects that aim to generically eliminate control-flow attacks. 
These approaches focus on the basic observation that all control-flow attacks work by adding new nodes 
to a control-flow graph, or executing existing code out of order by adding new edges. By enforcing control 
transfers such as entry and exit points, all control-flow attacks can be mitigated – at least in theory. Of 
course even if the design is sound, the implementations may not be. One thing that should be very clear 
from the discussion above is that many well designed solutions have been successfully and generically 
bypassed due to implementation flaws. 
 
First, we examine two systems which attempt “sloppy” enforcement of correct control flow. 
 
As mentioned above, PointGuard was an ambitious project which approached the problem by encrypting 
pointers while they are stored in memory. This approach aims to ensure the integrity of program control 
flow without attempting to understand or model it. Pointers that were modified at runtime by a control-flow 
attack would be converted into garbage values when decrypted, almost certainly provoking an access 
violation or crash. Unfortunately, PointGuard as described was a compiled-in solution, making it 
unsuitable for Windows (unless Microsoft choose to implement it themselves). Other papers identify 
certain limitations in the PointGuard implementation73, and also propose a hardware based 
implementation. 
 
A different approach that pre-dates PointGuard is Program Shepherding74 which used a machine-code 
interpreter to provide runtime checking. Program Shepherding allows arbitrary restrictions to be placed on 
code execution, allowing for both tight and loose control flow policies.  
 
By using “Restricted Code Origins”, “Restricted Control Transfers” and “Un-Circumventable Sandboxing”, 
security policies can be defined and applied to code at runtime. This flexible policy approach could allow 
end-users to choose their own balance between security and usability, which is an important factor for 
most organisations. Another advantage is that Program Shepherding should be more or less operating 
system independent, offering the possibility of a truly cross platform solution. It must be noted, however, 
that Program Shepherding still does not aim to understand the CFG for each given application, it aims 
instead to apply arbitrary security policies to the observed control flow at runtime. 
 
On the negative side, a significant part of the potential protection offered by Program Shepherding can be 
replicated by lower-impact solutions. 3rd party anti-exploitation solutions can already implement the most 
valuable checks that were suggested by the Program Shepherding team, such as “ret follows call”, return 
range checking and enforcing module entry points. These checks can be performed at runtime with 
function hooking and code injection. The “Restricted Code Origins” checks are covered to a great extent 
(although not completely) by any approach that provides non-executable data segments and read-only 
code segments.  
 
The biggest disadvantages of the Program Shepherding approach were its complexity and performance 
penalties. Since it is relying on a machine code interpreter to apply the security policy to code operations, 
the implementation would need to prove that the interpreter itself is immune to attack. Further, the 
performance penalties of Program Shepherding are relatively steep. Nevertheless, a system which is able 

                                                 
73 N. Tuck, B Calder, G. Varghese, Hardware and Binary Modification Support for Code Pointer Protection From 
Buffer Overflow, in Proceedings of the 37th International Symposium on Microarchitecture, December, 2004, online at 
http://www-cse.ucsd.edu/~calder/papers/MICRO-04-CodePointerProtection.pdf 
74 V. Kiriansky, D. Breuning, S. Amarasinghe, Secure execution via program shepherding, in 11th USENIX Security 
Symposium, 2002, online at http://www.cag.lcs.mit.edu/commit/papers/02/RIO-security-usenix.pdf 
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to implement standard, flexible execution policies across multiple operating systems is extremely 
commercially attractive, assuming the problems could be overcome. 
 
The final, and most recent, approach examined is a research project on Control-Flow Integrity (CFI) from 
Microsoft Research, published in February 2005. CFI is described both in informal language75 and 
formally76 in separate papers. 
 
CFI is different to the other solutions presented so far in that it does attempt to understand the CFG of 
protected applications. In summary, CFI works in two stages. The first is to determine the acceptable 
control flow of a given program. This can be performed by runtime analysis (profiling), source code 
analysis or static binary analysis. 
 
Once the control-flow has been analysed and a CFG produced, the binary is then permanently modified 
with code that verifies control flow changes at runtime – in essence self-verification checks are added to 
the machine code of the program itself. In the example implementation, control transfers are verified with 
matching pairs of id tags, so that instead of “call location” an id tag is added to form “call id, location”. In 
this way the id tag can be “checked” when control is received at the destination address77. By performing 
verification in this way the system aims to prevent attackers from inserting new edges in the CFG – 
recalling that without adding a new edge no control-flow attacks are possible. 
 
The initial CFI research is promising for several reasons: 

• It is backwards compatible, since it uses binary instrumentation that can be applied to older 
versions of Windows 

• The performance penalty is manageable. As an added advantage, with future modifications to the 
IA-32 machine code instruction set the performance impact could be virtually eliminated 

• Because it uses simple binary instrumentation rather than a complex external reference monitor, 
the security provided by CFI can be formally analysed, an important factor for some organisations 

 
There are some limitations to the CFI approach – for example it is measurably weakened on systems that 
do not support some form of non-executable data. Another issue is that a static analysis approach would 
most likely present major compatibility issues for the growing incidence of packed and encrypted binaries 
from commercial vendors. 
 
Nevertheless, CFI seems to offer the best current prospect for a final, “all-in-one” solution to control-flow 
attacks as a general problem. Unfortunately, the history of anti-exploitation technology leaves little 
justification for optimism in this regard, so hostile examination of a working implementation is crucial 
 
In summary, PointGuard attempted a de facto enforcement of control-flow by protecting pointers to code 
destinations. Program Shepherding attempted to apply predefined control-flow policies in a trusted 
machine code interpreter without analyzing each specific binary. CFI aims to model the static control-flow 
graph of each program, and then produces an instrumented binary which will internally detect CFG 
diversions at runtime. 
  

                                                 
75 M. Abadi, U. Erligsson et al, Control-Flow Integrity, 2005, available at 
http://research.microsoft.com/research/pubs/view.aspx?tr_id=868 
76 M. Abadi, U. Erligsson et al, A Theory of Secure Control Flow, 2005, available at 
http://research.microsoft.com/research/pubs/view.aspx?tr_id=867 
77 Actually, this is somewhat simplified. Because it is not possible to modify the processor CALL opcodes, the id tags 
are passed via CPU registers, in one of several possible opcode sequences. 
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Conclusions 
 
Based on the research and analysis above, we submit the following conclusions: 
 

1. Most Anti-exploitation technology provides less security than claimed 
2. 3rd party solutions will remain attractive mid-term 
3. Future solutions will unify anti-exploitation and mitigation approaches 
4. Anti-exploitation is imperfect and should be a last resort 

 

Most Anti-exploitation technology provides less security than claimed 
 
In the examination of the new Microsoft technologies, the most striking fact was that each technology 
contained implementation problems that significantly weakened the offered protection. Some of these 
implementation choices were made for legacy reasons, to preserve uniformity of exception handling, for 
performance or for compatibility – but whatever the reasons, all of the Windows features could be 
implemented more securely. 
 
However, this seems to be far more than a Microsoft problem; almost all of the open source solutions 
examined above provided less than their implied security targets. However, such shortcomings are only 
apparent on close technical examination. These problems were sometimes caused by implementation 
errors, but, mostly, particular choices were made for usability and compatibility. Finally, other works show 
that this is also true of many of the 3rd party Windows technologies, which we have chosen not to 
examine individually.  
 
Another important point to consider is that in more than one case, the protection technology introduced 
critical new security vulnerabilities, thus reducing the overall security of systems rather than increasing it. 
This has been true of several 3rd party solutions for Windows, and was also one of the key reasons that 
the PaX project was abandoned. 
 
This situation further complicates the potential widespread adoption of Windows anti-exploitation 
technology. Anti-exploitation technology is already difficult for most end-users to understand, let alone 
differentiate between the security profiles offered by various approaches. Technology that promises more 
than it delivers serves only to undermine users’ trust. 
 

3rd party solutions will remain attractive mid-term 
 
Generic anti-exploitation technology for Windows is a relatively new field, especially when compared to 
the work done on various UNIX platforms. With Microsoft now entering the game, and committing to 
“Isolation and Resiliency” as one of their four pillars of security78, the question must be asked – is there a 
future for 3rd party anti-exploitation software? Microsoft seem to have all the advantages – size, access to 
the source-code, access to the compiler and control of the native API. 
 
Based on the discussion above, we would submit that the answer must still be yes – 3rd party anti-
exploitation technology will continue to be valuable for the mid-term. 
 

                                                 
78 B. Gates, Microsoft Progress Report: Security, 2004, available at 
http://www.microsoft.com/mscorp/execmail/2004/03-31security.asp 
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It is not proposed that 3rd party solutions replace Microsoft solutions – most particularly because there are 
certain areas (such as compiled-in systems like /GS and heap management routines) that are almost 
totally inaccessible to 3rd party developers. However, 3rd party systems have several advantages when 
considering systems that are exploit focused: 
 
Backwards Compatibility 
 
Because 3rd party systems are typically injected into process and kernel space, they can be easily 
designed to be backwards compatible, at least for the NT kernel operating systems (Windows NT 4.0, 
Windows 2000, Windows XP, Windows 2003). Systems that require binary recompilation or major 
changes to core system components do not have that advantage, and usually require a forklift upgrade. 
 
Agility 
 
Most 3rd party systems can operate on a much shorter “generation” cycle than core operating system 
changes by Microsoft. This is particularly important for anti-exploitation techniques, since the field has 
shown a constant history of attack and counter-attack between the creators of anti-exploitation solutions 
and attackers. 
 
Directness 
 
3rd party vendors can afford to be more direct in their approaches to protection – for instance in the event 
that a buffer overflow is detected a 3rd party system will typically terminate the process or thread 
immediately, without raising an exception and taking the risk that structured exception handling has been 
compromised. 
 
Innovation 
 
Because competition between 3rd party solutions is high – there are dozens of different commercial and 
open source solutions that offer generic anti-exploitation technology – there is a burning drive to create 
innovative technology. While this sometimes has the lamentable effect of creating “marketing wars” where 
the battle is lost or won in the way the products are promoted, it also encourages innovators to create a 
competitive advantage by building solutions that are simply, technically, better. 
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Future solutions will unify anti-exploitation and mitigation approaches 
 
One of the key limitations to anti-exploitation technology is that it is only applicable to attacks that 
leverage a technical vulnerability by using a control-flow attack. Historically the most dangerous class of 
attacks, this attack pattern was most public from 2001 to 2004, when worms were causing frequent and 
widespread damage. However, in the first half of 2005, the focus has been shifting to a large class of 
attacks such as Spyware, Phishing and Trojan Horses which all eventually rely on computer misuse. 
These attacks are known, tongue-in-cheek, as “layer 8” attacks79, since they rely on tricking a user. 
 
Anti-exploitation technology is ineffective in the face of these layer 8 attacks. However, many anti-
exploitation approaches can be extended to also provide mitigation of the malicious effects. API profiling, 
“sandboxing”, virtualization, and outbound traffic control are all valuable mitigation techniques which could 
be effective against worms and targeted network attacks as well as layer 8 attacks. 
 
Since many 3rd party anti-exploitation technologies contain a kernel component, they are well placed to 
enforce either selective denial of dangerous APIs or known-good API enforcement based on policy or 
pre-defined behaviour profiles. Note that, despite attempts by marketing departments to expropriate the 
term, solutions that take the latter approach fall short of true sandboxing - since they do not create a truly 
virtualized execution environment. 
 
Another area in which mitigation technologies can be effective are for pure-data attacks such as those 
introduced by poor web application programming – notably SQL Injection and Cross-Site Scripting (XSS). 
These attacks do not exploit a control-flow vulnerability, but use malicious data as input to scripts. 
Technologies that can mitigate the effects of an attack rather than block the attack itself are effective 
here, since network based technologies to generically detect and prevent these kinds of attacks face a 
daunting technical challenge. 
 
In any case, given the threat posed by malicious user actions – whether or not those actions be 
intentional – mitigation approaches will become much more widespread. By unifying these approaches 
with anti-exploitation technology, solutions will be able to apply multiple layers of protection to many 
attacks. 
 

                                                 
79 This term originates from the OSI 7 layer model, of which the most abstract is Layer 7, or the Application Layer. 
Layer 8 would therefore be the end-user themselves.  
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Anti-exploitation is imperfect and should be a last resort 
 
As a final note, we must unfortunately conclude that anti-exploitation technology is one of the most 
technically complex areas in which security controls can be placed.  
 
There is an important security concept known as the “defender’s dilemma”. Simply put – an attacker or 
researcher only has to find one weak spot, whereas the defender must anticipate or mitigate all attacks in 
advance. Because anti-exploitation technology rests on the razor’s edge between attack and defense, it is 
particularly prone to new advances in attack methodology, with attackers and defenders vying constantly 
for new advances. For this reason, anti-exploitation technology will always be brittle in the face of 
revolutionary new exploit methods. 
 
With this in mind, although generic and built-in anti-exploitation technology is a valuable addition to 
Windows, end-users should ensure that they take a well-rounded approach to endpoint security. The best 
approach is to deploy products that are able to provide non-signature based protection at the host 
network interface as well as mitigation technologies such as “application firewalling” and API protection to 
counter the effects of malicious user action, locally running malware and other attacks that have 
somehow bypassed the previous layers of protection.  
 
Note that it should not be expected that any solution provide protection in all cases – there will always be 
individual applications that can be successfully exploited, even under very difficult conditions, provided 
the vulnerability is suitable and the attacker is prepared to create exploits that are specific to given 
systems or given applications. The first aim of anti-exploitation systems, then, should be to eliminate 
generic attacks, the so called “cook book” attack patterns which allow for the creation of scalable, re-
useable exploitation frameworks and rapid exploit development. 
 
For the present, and foreseeable future, all anti-exploitation approaches currently available can be 
bypassed in lab conditions or proof of concept exploits. This should not be taken as a technology failure, 
since some of these systems are almost 100% effective against real-world exploits. However, it should be 
taken as a challenge, and provide an impetus for continued innovation and development in the field. 
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